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Abstract

Background We investigated the flow of information from genome sequence to protein expression
implied by the Central Dogma, to determine the impact of intermediate genomic levels in plants.

Results We performed genomic profiling of rosettes in two Arabidopsis accessions, Col-0 and Can-0,
and assembled their genomes using long reads and chromatin interaction data. We measured gene
and protein expression in biological replicates grown in a controlled environment, also measuring
CpG methylation, ribosome-associated transcript levels and tRNA abundance. Each omic level is
highly reproducible between biological replicates and between accessions despite their 0.5%
sequence divergence; the single best predictor of any level in one accession is the corresponding
level in the other. Within each accession, gene codon frequencies accurately model both mRNA and
protein expression. The effects of a codon on mRNA and protein expression are highly correlated but
are unrelated to genome-wide codon frequencies or to tRNA levels which instead match genome-
wide amino acid frequencies. Ribosome-associated transcripts closely track mRNA levels.

Conclusions In the absence of environmental perturbation, neither methylation, tRNA nor ribosome-
associated transcript levels add appreciable information about constitutive protein abundance
beyond that in DNA codon frequencies and mRNA expression levels. The impact of constitutive goM
is mostly explained by gene codon composition. tRNA abundance tracks overall amino acid demand.
However, genetic differences between accessions associate with differential gbM by inflating
differential expression variation. Our data show that the Central Dogma holds only if both sequence
and abundance information in mRNA are considered.
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Background

Numerous studies in plants, fungi and animals have shown that the relationship between protein
and mRNA expression levels is only moderate, with correlations typically around 0.5-0.6 [1-3]. This
phenomenon is thought to be a consequence of several factors, principally, different rates of
synthesis and degradation of mRNA and proteins [4], compounded with buffering and cross-talk
between different spatial and temporal contexts of expression, protein length [5], measurement bias
and inaccuracy [6] and, potentially, how the data are processed.

Recent advances in genomics technologies have made it possible to assemble genomes almost
perfectly, to quantify DNA methylation and other epigenetic marks, and to measure protein and
transcript expression accurately at scale. By integrating these data across omic levels we can now
test if the flow of information supports the direction of the Central Dogma from lower to higher
levels, namely genome = epigenome = transcriptome = proteome. (Here we have added
epigenetics to the Central Dogma’s flow between genome and transcriptome; the genomic impacts
of the environment are assumed to act via the epigenome). Modelling between different omic
levels for the same gene addresses the question of correlations, while modelling across genes within
each level reveals which factors act differentially between genes.

If we use lower omic levels (primary DNA sequence features and epigenetic marks) to predict higher
levels (transcriptome, proteome), and ultimately phenotype [7], then three questions are
particularly relevant: First, which features of the underlying DNA sequence are most predictive of
higher omic levels? Second, how much of the information about protein expression levels encoded
in the basal genome sequence is mediated through intermediate epigenetic and transcriptomic
levels, and does it pass through multiple causal pathways? Third, in plants, what is the role of
constitutive gene body CpG methylation (gbM) in controlling gene and protein expression? This role
has been debated, and indeed it has been suggested that constitutive gbM might have no function,
although it appears to be evolutionarily conserved [8], under selection [9] and to play a role in
adaptation [10]. Furthermore, is it unclear how constitutive gbM in a specific gene is established
[11, 12].

Large-scale population-based studies can reveal how genetic and environmental variation impact
expression of different omic levels, but there is an equally strong case for looking in detail across
many biological replicates at smaller systems where genotype and environment are tightly
controlled and in which each omic level is measured in biological replicates as reproducibly as
possible. Here, we employed the second approach. We performed detailed genomic profiling of two
Arabidopsis thaliana accessions: Col-0 (the reference) and Can-0. The latter accession originates
from the Canary Islands and is phenotypically adapted to an environment quite different from the
central European origin of Col-0 [13]. Can-0 has about double the number of sequence differences
from Col-0 compared to other accessions [14], and has been variously characterised as a relict by
[15] and as “admixed” and distinct from four main genetic clusters (Europe, Madeira, Asia, Africa)
identified by long-read sequencing of 70 accessions in [16]. Can-0 and Col-0 therefore represent
genetically distinct lineages of Arabidopsis, so identifying shared characteristics between these
accessions in contrast to those that differ may reveal answers to some of the questions described
above.

We re-assembled the accessions’ genomes and measured constitutive CpG gbM for each gene. We
re-annotated each assembled genome to produce accurate data across omic levels, aiming to
eliminate reference bias. To try to eliminate environmental perturbations, we grew multiple
biological replicates of each accession under the same climate-controlled, long-day environment in



growth chambers. We quantified mRNA, tRNA, ribosome-associated transcripts, and protein
abundances in rosette leaves of defined developmental age.

These data enabled us to explore how variation in genome, epigenome, transcriptome, and
proteome are related. We first tested whether lower omic levels predict higher levels, and whether
the information they encode was unique to that level, using the fraction of variation across genes in
a focal omic level that is explained by variation in lower levels for this purpose. We asked if the
influence of gbM on higher omic levels is subsumed by the information encoded by genome
sequence, specifically in gene codon frequencies, if these codon frequencies affect mRNA and
protein expression in similar ways, whether the impact of each type of codon is related to its
genome-wide frequency, and how the levels of tRNAs relate to mRNA and protein expression.
Finally, we examined differences in methylation and expression between Col-0 and Can-0 to test
whether the former are related to the latter, which types of differences are most important, and
what this tells us about the causal effects of methylation. Our analysis uncovers some unexpected
yet important relationships, whilst showing others are insignificant under the experimental
conditions employed here.

Results
Col-0 and Can-0 genome assembly and annotation

We produced high-quality de novo assemblies of the Col-0 and Can-0 genomes, from a combination
of long (HiFi, ONT) and short (Illumina) reads, using Omni-C chromatin interaction data to confirm
our assemblies and orient scaffolds (Supplementary Table 1, Figure 1A). Seventeen and five gaps
remain in our assemblies of Col-0 and Can-0 respectively, all concentrated in rDNA arrays and
centromeres (Figure 1B). However, we obtained excessively high depth of coverage of both ONT and
HiFi reads in these repeat regions, suggesting the numbers of tandem repeats in centromeres may
be underestimated and, potentially, variable between nuclei (Figure 1A). Outside of large tandem
repeats, Omni-C data indicate that the assemblies are structurally accurate (as shown by the Pretext
contact maps in Supplemental Figures S1 (Col-0) and S2 (Can-0), as do the BUSCO and QV gene
content statistics (in Supplemental Table S1).

We aligned our Col-0 sequence with five published Col-0 assemblies, namely the old reference
TAIR10 [13], Col-CEN [17], Col-XJTU [18], Col-Rian [16], and the new community reference Col-CC
(Genbank reference GCA_028009825.2). The numbers of differences are shown in Figure 2 and are
generally small, e.g. there are only about 10,000 SNP differences between the Col-0 assemblies, and
almost all of the observed differences are in the numbers of tandem repeats. Some differences are
likely to be artefacts from different assembly algorithms; indeed, our Col-0 most closely resembles
the Col-XJTU assembly, where the same software and similar pipelines were employed
(Supplemental Table S2). Comparison of Col-CC and Col-Cen shows similar numbers of differences,
so our Col-0 assembly is not unusual.

We also compared our Can-0 assembly to that reported in [16] (named Can-Rian here) and again
found similar numbers and patterns of differences as observed between different long-read Col-0
assemblies (Figure 2, (Supplemental Table $2). We conclude that all these assemblies have similar
accuracies and that most of the differences occur within highly repetitive regions and represent in
part algorithmic artefact. However, we cannot exclude the possibility of small numbers of genuine
sequence differences in the germplasm used as a sequencing substrate, arising in unstable tandem
repeat regions.



Henceforth, "Col-0” and “Can-0" refer to our assemblies and annotations of these accessions, unless
otherwise stated. Where we calculate the same statistic in Col-0 and Can-0, the numbers are
reported as an ordered pair. For example, our assemblies’ lengths (Col-0: 133.23 Mb, Can-0: 133.09
Mb) and N50 values (18.4 Mb, 12.5 Mb) are very similar to those obtained in [17, 18].
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Figure 1 Assembly of Col-0 and Can-0 genomes. (A) Circos plot comparing the Col-0 (orange set, left)
and Can-0 (blue set, right) genomes. Links in the middle show genomic rearrangements. Purple links:
inversions, orange links: translocations between different chromosomes. Light blue: HiFi coverage,
light green: ONT coverage. Grey line panel: GC content of the genome. Dark green line: repeat
density, Orange filled panel: percent CpG methylation. (B) Cartoons of chromosome (chr) assemblies



of Col-0 (left) and Can-0 (right) showing gene densities, the positions of assembly gaps (green) and
indicating where the assemblies reached into the telomeres (red dots).

We annotated both genomes, using ab initio gene prediction applied to both short-read (lllumina)
and long-read (Iso-Seq) RNAseq data from rosette leaves sampled at the 9-leaf stage. We annotated
28,763 and 28,532 protein-coding genes and 47,596 and 45,756 alternatively spliced isoforms
(Supplemental Table S3). These counts include duplicated genes within each accession. If we
exclude duplicates then there are 24,325 pairs of orthologous genes between Col-0 and Can-0 of
which 23,081 are also annotated in Araport11 [19]. Several hundred genes are unique to each
annotation, as shown in the Venn diagram in Figure 3. Supplemental Files S1, S2 contain the
annotations of the genomes as GFF files. Supplemental Files S3 and S4 contain the mRNA and amino
acid sequences of the Col-0 predicted genes and Supplemental Files S5 and S6 contain those for
Can-0.

Taking the primary isoform in each accession, in total 20.30% of orthologous coding sequences are
identical at the amino acid level, and 52.67% differ at no more than six codons (see below).
However, 6.96% differ by more than 100 codons. Since 35.09% of homologous gene pairs have
different numbers of annotated isoforms, there is some ambiguity in these statistics.
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Figure 2 Counts of differences as computed by dna_diff [20] between our Can-0 (blue background)
and Col-0 (yellow background) assemblies and with four other Col-0 and one other Can-0 assemblies,
namely Can-Lian, Col-Lian: [16], Col-CEN [17], Col-XJTU [18], Col-TAIR, the TAIR10 reference, Col-CC:
the community consensus assembly (Genbank id GCA_028009825.2). Pink background shows
comparisons between selected other Col-0 assemblies.



mRNA and protein expression levels are highly reproducible but relatively poorly correlated

We quantified the abundance of mRNAs, ribosome-associated RNAs, and proteins in Col-0 and Can-0
rosette leaves raised in growth chambers under identical long day conditions and harvested at the
same 9-leaf developmental stage (Supplemental Table S4). By minimising environmental and
temporal variation we thereby focused on internal sources of variation in gene and protein
expression and ribosome association. We applied quality control filters to remove duplicated genes,
genes longer than 6 kb, and genes without a 1-1 ortholog between the two accessions, leaving
22,606 genes.

Of these genes, 18,226 were expressed in Col-0 (and 772 only in Col-0) and 18,200 expressed in Can-
0 (746 only in Can-0). There were 17,454 ortholog pairs with mRNA expression in at least one
replicate in both accessions. After removing genes with premature stop codons, 17,414 expressed
genes remained for analysis. If we further only retain those genes with expressed mRNA in all five
biological replicates in each accession then there are 15,669 in Col-0, 15,669 in Can-0 and 15,215 in
both. Our downstream analyses do not employ this additional filter except where noted.

Proteins were analysed using a label-free data-independent acquisition (DIA) workflow, employing
intensity-based absolute quantification (iBAQ; [64]) to derive comparative protein abundance from
mass spectrometry data between the two accessions. This enabled quantification of 8,915 proteins
common to Col-0 and Can-0. Both mRNA and protein expression were detected in both accessions
for 7,771 ortholog pairs, whilst a further 9,633 pairs had mRNA expression in both accessions but no
observed protein expression. To some extent, this reflects the comparatively lower coverage of
proteomic data, but it also suggestive of extensive post-transcriptional control. Interestingly, 28
genes had protein but no mRNA expression in Col-0 and 32 in Can-0, perhaps indicating RNA
instability. If we only retain genes expressed in all replicates, then there are 7,721 genes expressed
in mMRNA and protein in both accessions and 7,494 expressed in mRNA but not protein in both
accessions; no genes were expressed in protein but not mRNA.

Both mRNA and protein measures were highly reproducible across replicates (Supplemental Table
S5); for genes with both mRNA and protein expression, correlations of log-transformed mRNA levels
between 5 replicates within an accession all exceed 0.98, as did correlations between 4 replicate
protein levels within an accession (all correlations are between log-transformed data unless
otherwise stated). Correlations between accessions are also very high; all mRNA replicates exceed
0.95, despite the presence of many differentially expressed genes (discussed later). The strength of
these mRNA correlations was slightly lower for genes without protein, although all correlations
between replicates still exceeded 0.94. Correlation of protein expression between each accession
always exceeded 0.91 among replicates.

We then combined the expression levels across replicates for each gene by taking geometric means.
Looking across genes within each accession, the most abundantly expressed genes and proteins
greatly exceed the respective median level: 2,151-fold, Col-0; 1,370-fold, Can-0 for mRNA and 640-
fold; 591-fold, respectively for protein (Figure 4 A,B). We report fold changes relative to the median
rather than the full dynamic range of expression because the latter is strongly biased by genes
expressed at near-zero levels. Protein dynamic range is well established to exceed that of RNA but is
not generally captured in proteomics workflows, and especially not in tissues such as leaves which
are dominated by a small number of highly abundant proteins [21, 22]. Most of the highly expressed
genes and proteins are involved in photosynthesis, as would be expected for leaf tissue.
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Figure 3 Venn diagram showing overlaps between genes annotated in Col-0, Can-0 and Araport11
[19]. The numbers shown are the counts of genes in the different intersections. For example, there
are 289 genes only found in the Col-0 annotation, while 1,373 genes are common to Col-0 and
Araport but absent from Can-0.

mMRNACol mRNACan proteinCol protein Can
mRNA Col 1 0.9722 0.6635 0.6382
mRNA Can 0.9679 1 0.6444 0.6471
protein Col 0.3101 0.3960 1 0.9154
protein Can 0.3104 0.4075 0.9406 1

Table 1 Pearson correlations between mean expression levels of mRNA and protein in Col-0 and Can-
0 across 7,771 genes. Blue background: correlations between raw expression values. Orange
background: correlations between log-transformed values, using the transformation y=logio(x+1) i.e.
adding a pseudo count of 1 unit.

To analyse correlations within and between mRNA and protein expression we focussed on the 7,771
ortholog pairs of genes with mRNA and protein expression in both Col-0 and Can-0. After log-
transformation the correlation between mRNA and protein within an accession was (0.664, 0.647),
about 50% higher than without log transformation (Table 1, Figure 4A,B), and similar to that
reported in maize leaves [1]. Despite differences in measurement and analysis methodologies the



most accurate predictor of protein expression is not mRNA from the same accession but rather
protein from the other accession (Table 1). We return to this point below.

The distributions of mMRNA gene expression were markedly different depending on whether protein
expression is also observed or not (Figure 4 C,D), with the former following an approximately
lognormal distribution. Genes without detectable protein expression have a complex mRNA
distribution, comprising a spike of genes with very low expression and a shoulder of intermediate
expression, with a thin tail of highly expressed genes. The spike of genes with near-zero expression is
due to those genes not expressed in all replicates. Supplemental Figure S3 shows the same
distributions in Figure 4 omitting the 9,633 - 7,494 = 2,139 imperfectly replicated genes.
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Figure 4. The distribution of mRNA and protein expression, scaled so that the median level of
expression of genes with both protein and mRNA expression is equal to 1. A, B: scatter plots of mRNA
(x-axis) vs protein (y-axis) expression for orthologous genes in Col-0 (A) and Can-0 (B). Dotted red
lines show medians. C,D: Histograms of mRNA expression for genes with (pale red) or without (grey)
detectable protein expression in Col-0 (C) and Can-0 (D). The black curves indicate lognormal
densities fitted to the mRNA+protein histograms using robust estimates of mean and standard
deviation. Expression scales are logarithmic throughout.

Ribosome associated transcript levels closely resemble standard mRNA expression for genes with
protein expression
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We next asked if transcripts associated with ribosomes were better correlated with protein
expression. Ribosome-associated RNAs were quantified in six biological replicates each of Col-0 and
Can-0 rosettes using 3'Ribo-seq [23] (expression levels are in Supplemental File $4). In total 17,513
of their 1-1 orthologs had detectable ribosome-associated transcripts (ribo-mRNA hereafter) in both
accessions. Within the 7,771 genes with protein expression, ribosome-associated transcripts
behaved very similarly to the mRNA data described above; 7,620 (97.9%) genes were also associated
with ribosomes, and the correlation of log-transformed ribo-mRNA and mRNA expression levels was
0.9530 (Col-0), 0.9574(Can-0). Correlation among the six biological replicates always exceeded 0.97
within an accession and exceeded 0.94. between accessions (Supplemental Table S5). Their
correlation with protein expression was (0.6490, 0.6415), very similar to that observed for mRNA
determined by RNA-seq.

Within the 9,673 genes for which mRNA but no protein was quantified, the pattern is slightly
different. Of these, 6812 (70.42%) also show ribosome association, and the correlation of expression
levels between mRNA and ribo-mRNA among these genes remained high, at (0.9303, 0.9451). All
correlations between replicates within an accession exceeded 0.89 but between accessions, the
correlations were lower with a minimum of 0.67. Only 59 genes are expressed in ribo-mRNA but
absent from mRNA. Among the 29.58% of genes without ribo-mRNA expression, average mRNA
expression was reduced by factors of (5.6, 5.4). Thus, the spikes of genes with very low expression
seen in Figure 4 C,D are absent among ribosome associated transcripts. Apart from this difference,
the ribo-mRNA expression levels and patterns were essentially interchangeable with those of mRNA,
and so for the remainder of this study we use the mRNA expression data.

Constitutive CpG methylation is reproducible across assay type and between accessions

We measured CpG methylation using both bisulphite-converted Illumina reads and ONT long reads,
the latter collected as a by-product of generating sequence for de novo genome assembly. Because
of the larger amount of leaf tissue required, plants for ONT sequencing were grown under short day
conditions, whereas long day conditions were used for bisulphite sequencing to enable direct
comparisons with the RNA-seq and proteomics datasets. We quantified each methylated CpG
dinucleotide as the percentage of methylated bases from reads covering that CpG position. As Figure
1A (orange track) shows, uniformly high levels (>75%) of CpG methylation occur throughout the
centromeres but methylation is variable in other regions of chromosomes. Across CpG sites, the
correlation between bisulphite and ONT gbM values was 0.94 in both Col-0 (2.6 M sites) and in Can-
0, (2.8 M) despite the different growth conditions (Supplemental Figure S4). As the coverage of ONT
data is superior to bisulphite sequencing and methylation readouts are less prone to GC bias [24] we
therefore used ONT CpG methylation values in all further analyses.

We then computed gene-body methylation (gbM) for every annotated gene as the mean percentage
methylation across all CpG dinucleotides within the genomic interval spanned by the gene, including
exons and introns. We also quantified methylation in flanking regions around each gene for
differential expression analysis (described later). The genome-wide distributions of gbM in Col-0 and
Can-0 across gene expression categories (i.e., protein and mRNA, only mRNA, or no expression) are
shown in Figure 5. All three distributions share a mode in gbM around 12%, but with differing upper
tails. The correlation between gbM in Col-0 and Can-0 is slightly higher in genes with protein and
MRNA detected (R = 0.890) than in genes with only mRNA (R = 0.830) but is surprisingly similar.
Figure 4 also plots the distribution of (6195, 6042) other genes without any expression at mRNA or
protein. These contain subsets of (838, 952) genes where gbM exceeds 75%. However, most genes in
all three categories have low levels of gbM under 25%; all modes are close to 10%. Thus, constitutive
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gbM varies only slightly across most genes. Below we discuss its impact on expression below, after
considering codon composition effects.
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Figure 5 Distribution of gbM in (A) Col-0 and (B) Can-0 genes, categorised according to whether both
protein and mRNA were detected or only mRNA detected, or not expressed.

Codon composition affects expression

Codon composition is known to affect both mRNA and protein expression [25-27]. In our analysis we
represented the coding sequence of each protein-coding gene by a vector of the 61 non-terminator
codon frequencies, hereafter abbreviated to CDS. This representation therefore ignores the order of
the codons. Among the 24,325 ortholog pairs of protein-coding genes, the median numbers of
amino acids per gene in Col-0 and Can-0 are (349, 348) and the median difference in codon
frequencies between orthologous genes in Col-0 and Can-0 (i.e. the sum of absolute differences in
the counts of each of the 61 non-terminator codons) is 6 codons.
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Figure 6 Codon effects on mRNA and protein expression. (A) Scatter plot of 61 codon-effects on log
Col-0 mRNA expression (x-axis, represented as the T-statistic for each codon) vs the corresponding
effects on log Col-0 protein expression. Each point is labelled with the codon and encoded amino
acid, and all codons with the same amino acids share the same colour. Models were fitted to genes
with both protein and mRNA expression in Col-0. (B) Similar analysis for Can-0. (C) Similar analysis
comparing codon effects on mRNA expression in Col-0 estimated for genes with both mRNA and
protein expression (x-axis) and for genes with only mRNA expression (y-axis). (D) Same plot as for (C)
but in Can-0.

We modelled mRNA and protein expression of each gene in terms of these codon frequencies by
fitting linear multiple regression models to the log-transformed expression levels, thereby estimating
the expression effect (regression coefficient) of each codon. Under this model, if the codon ¢ with
multiple regression coefficient 5. occurs Ny times in gene g, then its predicted log expression level
is Yy = U+ Xc Ny Be, where pis the average expression level. Codons with positive codon effects
increase expression and negative effects decrease it. The codon expression effects and their
standard errors are shown in Supplemental Table S7.

We defined the standardised effect of each codon on expression as its expression effect divided by
the standard error. Among 7,771 ortholog pairs with mRNA and protein expression in both
accessions, standardised effects are highly correlated between mRNA and protein in both accessions
(R=0.800, 0.800) (Figure 6 A,B, Supplemental Figure S5). These codon expression effects are highly
reproducible between Col-0 and Can-0 (R=0.99 for both mRNA and protein). If we estimate mRNA
effects by restricting attention to genes for which protein was not quantified, then the resulting
mRNA codon effects are markedly less correlated with those modelled from genes with both protein
and mRNA (R = 0.505,0.498, Figure 6 C,D).
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We next asked if these codon expression effects are related to global codon frequencies [28], to test
the hypothesis that more frequent codons are associated with increased expression. We computed
global codon proportions, either by summing the genomic gene codon frequences to give
proportions independent of expression level, or by weighting the gene codon frequencies by mRNA
or protein expression, thereby taking account of expression level. We then compared these
proportions with the codon effects. The standardised codon effects for mRNA and protein
expression are uncorrelated with overall codon abundance, defined as the relative fractions of
codons across genes with both protein and mRNA expression (Figure 7 A,B; neither of the
correlations of 0.065 and 0.235 are significant at P<0.05). Thus, more commonly used codons are not
associated with higher gene or protein expression.

We also tested if codon frequencies correlate with gbM by fitting the same multiple regression
models with gbM as the dependent variable in place of mRNA or protein expression. (Figures 7 C,D)
show there is only weak correlation between the codon effects for expression and those for gbM.
We return to the relationship between gbM and codons later.
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Figure 7 Lack of correlation between standardised codon effects in Col-0 and gbM and codon
abundance. In each scatter plot, each point represents a codon and is colour-coded by the encoded
amino-acid. A, B: standardised codon effects on gbM (y-axis) vs codon effects on mRNA expression
(A) and protein expression (B). C, D: y-axis is codon abundance, defined as the fraction of codons in
all genes with mRNA and protein expression, x-axis: codon effect on mRNA expression estimated
multiple linear regression.
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tRNA abundance tracks global amino acid frequency

We next asked if tRNA abundance was related to these codon expression effects and to codon
abundance and gene expression. The genetic code is redundant, with 20 standard amino acids
specified by 61 sense codons in eukaryotes. Isoacceptor tRNAs comprise families that accept the
same amino acid, but which differ in their anticodon sequence, reflecting the fact that all amino
acids other than methionine and tryptophan are specified by more than one codon. Isodecoder
tRNAs carry the same anticodon but differ at their primary sequence at sites other than the
anticodon. In common with other eukaryotes, Arabidopsis encodes tRNAs for only 45 sense codons
plus the initiator tRNA-Methionine, the remainder employing third-base wobble base-pairing to
effect translation [29-31].

We measured tRNA abundance using modification-induced misincorporation tRNA sequencing
(mim-tRNAseq) [32, 33] in Col-0 and Can-0 leaves grown and harvested under the same conditions
used to quantify mRNA and protein expression. Using the genomic tRNA database (GtRNAdb, [34])
annotation of Arabidopsis tRNA genes, we queried expression at 642 nuclear-encoded tRNA genes
that also had Araportl1 gene identifiers (Supplemental Table S6), representing 224 distinct tRNA
isodecoders. We observed non-negligible expression for 157 of these isodecoders. For each of the 46
anticodons, we calculated the relative expression across all isodecoders.

Non-organellar tRNA abundance levels are highly correlated between Col-0 and Can-0 (R=0.988;
Figure 8 A). We found the relationship between codon frequencies and tRNA isodecoder abundance
(Figure 8 B, R = 0.397) was obscured by the presence of codons without dedicated tRNAs (the
vertically stacked codons on the left of Figure 8 B), although the figure also shows that some codons
with no specific tRNA gene still have strong standardised effects. It is known which tRNAs translate
these missing codons[31] (Supplemental Table S6a) and Figure 8C shows the scatter plot when we
merge frequencies for codons which are translated by the same tRNAs; the correlation increases to
0.561 (Figure 8 C). Moreover, when we aggregate tRNA abundance and overall codon usage by the
encoded amino acid (among genes with protein and mRNA expression) to produce isoacceptor
frequencies, the correlation increases further 0.754 (Figure 8 D; results for Can-0 are very similar).
The correlation reaches 0.811 when amino acid frequencies are weighted by protein abundance
(Figure 8 D; a very similar relationship occurs when amino acid frequencies are weighted by mRNA
abundance instead, because these are very highly correlated, (R = 0.979). The most discordant
amino acid is tryptophan (W), which has higher tRNA expression than expected given its low
frequency. Interestingly, tryptophan is the only amino acid apart from methionine encoded by a
single codon. Additionally, it is encoded by UGG, which is in the same codon box as the UGA stop
codon. High levels of its matching tRNA may be needed for it to compete with release factor, which
may sample UGG codons.

There is only a weak relationship between the tRNA abundances and our estimated codon effects on
expression. The correlations between tRNA abundances and the mRNA codon effects are (0.286,
0.283, scatter plots in Supplemental Figure S6 A, B) and correlations with protein codon effects are
(0.249, 0.234, scatter plots in Supplemental Figure S6 C, D). These correlations are of borderline
statistical significance (mRNA: P < 0.025, protein: P < 0.057). In comparison, the correlation of
0.811 with amino acid frequencies satisfies P < 10~ *. All codon-related statistics (regression
coefficients and their standard errors, and tRNA abundance data) are in Supplementary Table S7.
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Figure 8 Relationships between tRNA abundance and codon and amino-acid frequencies. Codons and
tRNAs are color-coded by encoded amino acid; the corresponding amino acid for each codon is
specified in single letter code following a colon (i.e., in the format AAC:N; asparagine). Pearson
correlation coefficients are shown in top left of each plot. (A) Col-0 tRNA isodecoder percentage (x-
axis) vs Can-0 tRNA isodecoder percentage (y-axis). (B) Col-0 tRNA isodecoder percentage (x-axis) vs
Col-0 codon frequency percentage. (C) Same as (B) except that codons without specific tRNAs are
merged with the codons responsible for their translation to amino acids. (D) Col-0 codon fraction
across all annotated genes (x-axis) vs Col-0 tRNA abundance aggregated by encoded amino acid
(AA). Equivalent plots for Can-0 are very similar. If codon frequencies are re-weighted by the protein
expression levels the plot are very similar with slightly higher correlations.
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Modelling across omic levels reveals the importance of codon composition on expression and gene
body methylation

We next asked which genomic features predict mRNA and protein expression levels across genes
within each Arabidopsis accession. To model mRNA expression, the explanatory factors we
considered were coding sequence DNA composition (referred to as CDS hereafter) and gene-body
CpG DNA methylation (gbM, defined as the mean percentage of methylated CpGs within introns and
exons). For protein gene expression we additionally considered mRNA expression as an explanatory
factor. We also modelled gbM in terms of CDS. Taken together, these model choices let us test the
Central Dogma’s information flow.

We fitted multiple linear regression models, where the focal dependent variable could be gbM,
mRNA or protein, across various subsets of expressed genes, and the independent variables the
lower omic levels measured in the same genes. For this modelling we reparametrized CDS codon
frequencies as the combination of three, biologically interpretable, nested components of increasing
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complexity, namely protein length (the sum of all codon frequencies), then the 20 amino acid
frequencies (the sums of frequencies for those codons representing a given amino acid, requiring 19
additional parameters), and finally codon usage within each amino acid (representing the deviations
from the baseline effect for an amino acid, comprising 41 extra parameters). The first two of these
components are linear combinations of the codon frequency counts, and the third accounts for
variation due to the choice of codon within an amino acid class. For clarity, we refer to “codon
frequencies” when interpreting CDS as a model of the 61 codon counts (i.e. as in the previous
sections), and “codon usage” when interpreting it after separating out protein length and amino acid
frequency. Thus, depending on the parameterisation used, the same fitted model can be
reinterpreted to provide different insights, while yielding identical predicted effects and explaining
the same total variance. This reparameterization was used to test the effects of adding increasing
information about sequence composition on constitutive gbM, mRNA or protein expression within a
single analysis of variance.

Each model is expressed in the form Y ~ A+B+.... , where Y is the target omic level and A, B ... are
explanatory omic levels. For example, the model Col-protein ~ CDS + gbM + mRNA means that
protein expression across the genes with protein and mRNA expression in Col-0 is modelled in terms
of first codon frequencies (CDS), then gene body methylation (gbM) and finally mRNA expression
measured in those genes. The order in which levels are included in a model affects how much
variation is explained by each level (i.e. the modelling is greedy, so each level is assigned the
maximum possible variation after allowing for the previously fitted levels) thereby revealing
confounding between levels. For example, fitting gbM either alone or after fitting CDS reveals how
much variation in gene expression is solely attributable to gbM. We also subdivided the genes into
two classes; those 7,771 with both measurable mRNA and protein expression; — the difference is due
to a few genes with multiple annotated stop codons which were excluded), and those 9,633 with
only mRNA expression and denoted mRNA* or gbM* in the Figure 9 and Supplementary Table S8.
Both mRNA and protein expression were log-transformed prior to fitting the linear models which
therefore represent multiplicative effects on expression. The Figure 9 legend describes the
dependent and explanatory omic levels in detail.

The analyses are summarised as barplots in Figure 9, where the horizontal extent of each bar
indicates the fraction of variance in the target omic level attributable to the corresponding
component in the model, after fitting the preceding terms. For comparison we also show the results
of modelling an omic level in one accession by the corresponding level in the alternate accession
(pink bars: mRNA and yellow bars: protein). The results for Col-0 (Figure 9 upper) and Can-0 (Figure
9 lower) are extremely similar, illustrating the robustness of these analyses to genetic perturbation.

The p-value of each variance component from its corresponding partial F-test is given in
Supplementary Table S8; virtually all components are extremely significant with analysis of variance
p-values often much smaller than 107X° even when the fraction of variance explained is too small to
be visible. That is, statistical significance is necessary but not sufficient to imply biological
importance. Multiple linear regression models we use here are “greedy”: the order in which
explanatory variables are fitted in the model determines how much variance each explains.
Comparing models in which the same variables are added in different orders reveals statistical
confounding, i.e. when the same outcome is attributable to different causes.
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Figure 9 Bar plots of variance explained by multiple linear regression models. Each row represents
one model. The model is specified on the left, the colour indicating whether Col-0 (black) or Can-0
(brown) is the target omic level (dependent variable). Each model is by the formula Y ~ A+B+...,
where Y is the target and A, B ... are explanatory omic levels. The targets for the Col-0 analyses are:-
Col-protein: log-transformed protein expression, Col-mRNA: log-transformed mRNA expression for
genes also with protein expression; Col-mRNA*: log-transformed mRNA expression for genes without
protein expression; Col-gbM: percent gene-body methylation for genes also with protein expression;
Col-gbM*: percent gene-body methylation for genes without protein expression. Similar names apply
for the Can-0 analyses. The explanatory omic levels are:- CDS: coding DNA sequence composition,
(partitioned into protein length, amino-acid usage and codon usage); gbM: percent gene body
methylation; mRNA: log-transformed mRNA expression; gbM.alt, mRNA.alt, protein.alt: expression of
gbM/mRNA/protein in the alternative accession (i.e. Can-0 if the target accession is Col-0). The
barplot for each analysis represented the fraction of variance explained by each term in the model,
using the colour-coding given in the legend. CDS effects are partitioned into protein.length,
amino.acid.usage and codon.usage; The horizontal extent of each bar represents the fraction of
variance due to the corresponding variable, after first fitting the preceding variable sin the formula
from left to right.

We consider the impact of explanatory omic levels on expression in Central Dogma order. The
simplest explanatory variable, protein length, is known to be anticorrelated with expression [35]. In
Col-0, we find protein length alone explains 7.7% of the variation in mRNA expression, (double that
explained by gbM at 3.5%), and 6% of protein expression variation. The statistics in Can-0 are similar
(mRNA: 8.1%, protein: 11.1%). The next component of sequence composition, amino-acid usage,
explains significant additional variance in mRNA (5.7%, 5.8%) and in protein expression (12.8%,
12.7%), after accounting for sequence length, although spread across 19 parameters. Codon usage
explains further variance (mRNA:6.0%, 5.3%; protein: 6.8%,6.7%), but spread over far more (41)
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estimated parameters. Overall, CDS effects on mRNA expression (19.5%, 19.2%), are lower than
protein expression (25.6%, 24.9%), and the relative impacts of the three CDS components also differ.
When we model the mRNA expression of those genes without protein expression (denoted mRNA*
in Figure 9) the fractions of variance explained by CDS are halved (10.1%, 9.4%).

We then modelled constitutive gbM as a function of CDS. Among genes with both mRNA and protein
expression we find CDS effects account for close to half (42.0%, 42.0%) of gbM variance. However,
these fractions are more than halved (18.1%, 14.8%) among genes with only mRNA expression.
Modelling gbM in one accession by the corresponding level in the alternative accession (shown as
tan coloured bars in Figure 9) explains far more of the variance (79.4% for genes with protein and
68.6% for those without) and shows that constitutive gbM is highly reproducible (as expected, given
the reproducibility of the underlying CpG methylations reported above) but that some of this
reproducible variation is unexplained by codon frequencies.

We next treated gbM as an explanatory level to model mRNA and protein expression. When
considered in isolation (i.e., excluding CDS effects), gbM has a relatively small but highly significant
impact on mRNA expression in genes with both protein and mRNA expression, explaining (3.5%,
4.2%) of mRNA variance, but a negligible impact on the expression of genes without protein (0.1%,
0.1%). When CDS effects are fitted before considering gbM, virtually all the effects of gbM are
ablated; under a constant environment, the impact of constitutive gbM on mRNA expression
mediates a small fraction of sequence composition effects.

When modelling protein expression, if mMRNA expression is added after CDS and gbM, in total half of
the variation in protein expression can be explained (51.9%, 49.8%), and which exceeds that when
only gbM and mRNA are included (44.1%, 42.0%). Thus, part of the information encoded in CDS
relevant to protein expression is not mediated through mRNA, in contradiction to the Central
Dogma. Similarly to modelling gbM, much greater fractions of variation are explained by modelling
Col-0 mRNA by Can-0 mRNA (and vice versa) (94.5%, 94.5%) or Col-0 protein by Can-0 protein
(83.8%, 83.8%). Thus, whilst our simple regression models are powerful, they do not capture all the
information, and there is unexplained yet reproducible variation.

Differential comparisons of omic levels between accessions

We observed 7,585 differentially expressed (DE) mRNAs at FDR < 0.05 among the 17,771
orthologous Col-0:Can-0 gene pairs at which we could make a determination, ignoring protein
expression status. In the subset of 7,060 genes with differential determinations for both mRNA and
protein, we observed 866 DE proteins (FDR<0.05) and 2,850 DE mRNAs (FDR<0.05; EdgeR did not
determine DE status for all genes, so these subsets are slightly smaller than those in the previous
sections) (Supplemental Table S9). Figure 10 A plots the log, fold change in expression (logFC) for
mRNA vs protein, color-coded by DE FDR. It shows that logFC is broadly consistent between mRNA
and protein, although there are a significant number of genes which are DE for only mRNA or only
protein. Of the DE mRNAs and DE proteins, 579 (20% of DE mRNAs and 67% of DE proteins) are in
common (Fisher’s Exact test < 10-32), as shown in the Venn Diagram in Figure 10 B. Gene Ontology
(GO) enrichment analysis [36] revealed distinct but overlapping enrichments between DEGs and
DEPs (Supplemental Figure S7). Proteins and transcripts associated with glucosinolate biosynthesis
exhibited increased abundance in Can-0, whereas proteins associated with immunity
(“hypersensitive response”, “cell death”, “response to biotic stimulus”) and abscission were
increased in abundance in Col-0 (Supplemental Fig. 7.
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Figure 10 Differential expression (DE) and differential gene-body methylation (gb DML). (A): Scatter
plots of log: fold change (logFC) for mRNA (x-axis) vs protein (y-axis) for 5,698 ortholog pairs
between Col-0 and Can-0 with DE determinations in protein and mRNA. Points are color-coded
according to whether the pairs are DE at both protein and mRNA, only protein, only mRNA or neither
(all determinations using FDR<0.05). (B): Venn diagram of overlaps of mRNA and protein DE and gb
DML. Numbers are counts of DE gene pairs within each subset (e.g. there are 2,026 pairs that are
only DE mRNA, 524+55 = 579 that are both DE mRNA and protein, and 55 that are DE mRNA and
protein and gb DML). (C) Distributions of absolute log2 fold-change in mRNA expression between Col-
0 and Can-0, for genes with (orange) or without (blue) gb DML.

Genetic and epigenetic correlates of differential expression

We next characterised how differential mMRNA or protein expression related to differences in CDS
and to CpG methylation, either outside or inside the gene body. We distinguished between a
differentially methylated locus, DML - a single syntenic CpG dinucleotide at which methylation
differs between Col-0 and Can-0 - and a differentially methylated region (DMR), in which average
methylation differs across the CpG dinucleotides within the region. If a gene body overlaps with at
least one DML or DMR, this gene body is defined as with DML or DMR. We used the same definition
to classify intron and exon regions, and genomic contexts up- or down- stream of the gene body, and
for structural variants (SV) as discussed below. The Venn diagram in Figure 10B shows the overlaps
with gb DML genes at 5% FDR. Of the 688 genes with gb DML, 336 (49%) are DE for mRNA or
protein, or both.

We compared DML and DMR gene classifications with the corresponding absolute values of logFC
expression, reporting -logio p-values (logP) of the Mann-Whitney tests, which are robust non-
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parametric tests of differences in the average ranks of the absolute logFC of expression between
genes with or without differential methylation. This analysis therefore does not require differential
transcript or protein expression at any specific FDR threshold but instead considers trends. The
results are summarised in Figure 11 (Supplemental Table S9).

Despite the high correlation of gbM between Col-0 and Can-0 at orthologous genes (R = 0.89), the
presence of DML or DMR within or nearby a gene body strongly associates with absolute log-fold
changes in mRNA expression (Figure 11). DML and DMR in gene bodies, or within 100 bp upstream,
have the highest impact on differential mRNA expression. In general, the presence of even a single
locus methylation difference (i.e. DML) is a stronger predictor of gene expression difference than is
DMR, with the exception of intronic DML which is not significant for mRNA abundance (logP = 0.61),
but highly significant for intronic DMR (logP = 122.42). Figure 10B show the overlaps between DE
MRNAs and proteins and gb DML. We found that the corresponding signed Mann-Whitney tests (ie
where we did not take absolute values of logFC) were markedly less significant. Figure 10C shows
the distributions of absolute log-fold changes for mRNA expression for genes with or without gb
DML. Although the distributions appear broadly similar, they have highly a significantly different
Mann-Whitney statistic (logP=79). Thus, although differential methylation is strongly statistically
associated with differential expression, it is not a reliable predictor.

We then used the same methodology to test if sequence differences are associated with differential
mMRNA and protein expression. We tested for associations between the presence of SNPs or small (<
10 bp) indels, or structural variations (SV, defined as indels>10bp) nearby or within differentially
expressed genes as for methylation using Mann-Whitney tests. Gene-body SVs, especially in introns,
have strong associations on differential mRNA abundance (Figure 11A). Interestingly, distant
structural variants can have stronger associations with differential gene expression. Similar if less
significant patterns occur for small variants.
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Figure 11 Impact of differential methylation, structural variation, and indels on differential (A) mRNA
and (B) protein expression between Col-0 and Can-0. The x-axis represents a schematic gene,
comprising upstream, gene-body (subdivided into intronic and exonic components) and downstream
genomic contexts. The y-axis represents the variation categories DML: differentially methylated loci,
DMR: differentially methylated regions, SV: structural variations, indels: short insertion-deletions, TE:
transposable elements. The number in each is the negative log10 p-value of the unsigned Mann-
Whitney test of association between the category in the given genomic context and differential
expression, (except for TE which shows the logP of the Spearman rank correlation test reflecting the
fact that differential TE abundance is measured quantitatively) . The orange shade of the cell
indicates the strength of association, from dark (strong) to pale (weak).

Discussion

It is a remarkable fact that although most genes are encoded only once in the nuclear genome, their
constitutive expression levels in a given tissue vary by orders of magnitude [22]. In the Arabidopsis
thaliana rosettes studied here, the most highly expressed genes exceed the median level by over
1,000-fold for mRNA and over 500-fold for protein. An important question is how these levels are set
and maintained, and their reproducibility. We have shown here that in two genetically divergent
accessions of Arabidopsis thaliana, these levels are indeed highly reproducible between biological
replicates in a controlled environment, and that a simple multiple linear regression model based on
gene codon frequencies is unexpectedly powerful at modelling both mRNA and protein expression
levels. A gene’s constitutive expression is thus partially determined by its internal codon
composition, which presumably evolved to express it at its optimal level by selecting codons
adaptively and tuning tRNA abundance to match overall demand for amino acids. The diagram in
Figure 12 summarises our findings.
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Figure 12 Genomic information pathways and their numerical linkages as observed in this study, in
relation to the Central Dogma. The boxes show different omic levels in Col-0 and Can-0. Black arrows
indicate the flow of information implied by the Central Dogma starting from CDS (peach) via gbM
(green) to mRNA (light blue), ribosome-associated mRNA (yellow) and finally protein (pink). The
strength of connection between levels is shown both by the numbers (Pearson correlation scale) and
by the thickness of the corresponding black arrows, and represents the correlation between
quantitative expression levels (except in the case of CDS where is represents the correlation derived
from the multiple regression codon frequency model, i.e. the square root of the fraction of variance
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explained). The merged arrows connecting CDS, gbM and mRNA to protein show the result of
combining information into a single model; note that their combined correlation of 0.720 is less than
the sum of their individual effects. The correlation of tRNA levels (lilac) with genome-wide codon and
amino acid frequencies is shown on the left. The correlations between corresponding Col-0 and Can-0
omic levels are shown next to the grey double-headed arrows.

Our results are based on a comparison of just two accessions in a single tissue, and under controlled
environment. They should be extended to a wider set of genomes and across different tissues and
environments to take account of expression quantitative trait loci, cell-type effects and
environmental variation. The two genomes used here are from the set of 19 founders of the
Arabidopsis MAGIC population of recombinant inbred lines descended from these founders [14, 37].
Work is underway by our group to analyse omic levels across the founders and the MAGIC
population, which will enable us to test if our conclusions are robust in the presence of significantly
more genetic variation.

Codon and tRNA Effects on Expression

Codon frequencies alone account for about 19% of the variance of mRNA expression, and about 25%
of protein expression, among those 7,771 genes with measurable mRNA and protein expression in
both accessions. Augmenting the codon model of protein expression with mRNA expression data
almost doubles the total to about 46%. Interestingly codon frequencies only explain 9% of variance
among the 9,633 genes with mRNA but no protein expression, suggesting the expression of these
genes is controlled by different factors.

When interpreting these results, it helps to bear in mind that the total fraction of variance explained
by a model equals the squared correlation between the observed and fitted values. That is,
correlations are larger than their equivalent variance fractions; 19% variance is equivalent to a
correlation of 0.46. In Figure 12 all the numerical linkages between omic levels are shown on the
correlation scale. However, it is more meaningful to report variance fractions when decomposing a
multi-component model in an analysis of variance (Figure 9). In addition, we report results after log-
transforming expression, so our models are multiplicative on the original measurement scale. This
means the impact on the original scale of expression of the codon ¢ with gene frequency n, will be
proportional to BZ, where B, is both the regression coefficient we estimate and the multiplicative
impact of a single copy of the codon on the original measurement scale.

If full sequence information from each gene is used for prediction (i.e. including the order of bases),
instead of being summarised as the 61 codon frequencies as was done here, it is possible to train
large language models with millions of parameters to predict expression patterns. In a different
Arabidopsis data set, and encoding each gene sequence by its sequence of codons, mRNA prediction
accuracies of between R? = 0.2 — 0.4 were achieved, depending on the model used [7]. Thus, there
is additional, exploitable, information encoded in the order of the codons in each gene. Nonetheless
it is remarkable how well our simple, biologically interpretable, model performs.

We find that a given codon has similar impacts on mRNA and protein expression; the correlations
between the 61 non-terminator codon effects on mRNA vs protein expression (R = 0.80, Figure 6
A,B) exceed those of the actual expression measures (R = 0.64 — 0.66, Figure 4 A,B), suggesting
that an underlying biological mechanism is being isolated. Whilst codon effects could point towards
tRNAs as mediators for their effects on protein translation, our analyses are also consistent with the
hypothesis that codons which increase protein translation also reduce mRNA decay, driving mRNA
stability and hence mRNA abundance [38-40]. Interestingly, we find that tRNA abundance is
uncorrelated with these estimated codon effects on expression but instead correlates with overall
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codon abundance (Figure 8 B,C). Furthermore, the aggregate tRNA abundance for all tRNAs
specifying a given amino acid (ie isoacceptors) tracks the overall frequency of that amino acid across
the proteome even more strongly than at the codon level (Figure 8 D). Our results suggest that tRNA
abundance adapts dynamically to the overall demand for amino acids but that differences in
translation efficiencies between tRNAs do not measurably affect abundance of specific genes. The
correlations we observed between tRNA abundance and codon usage resemble those reported in
humans [31]. In summary, codons interact with two distinct phenomena — their abundance relates
to tRNA abundance, but independently of their impact on expression.

Our results are broadly consistent with studies in human cell lines [41], where a combination of
sequence features (including protein length and predicted mRNA decay rate) and mRNA expression
explained about two thirds of the variance in expression of 512 proteins. Another study of mRNA
half-lives in human and mouse [42] also identified codon frequencies and protein length as key
factors. Although we did not measure mRNA decay rates, it is likely that our models of mRNA levels
are implicitly modelling them. In fact, of the 18 codons listed in [37] as impacting mRNA half-lives in
humans, our data in Supplemental Figure S4 share the same sign in at least 16 cases, a statistically
significant coincidence (P < 0.008, See Supplemental Data File S7). Our data were all collected
under uniform unstressed conditions, so we could not measure the impact of stress on codon usage,
which affects the translation of specific codons [43].

We exploited the fact that the codon frequency model is mathematically equivalent to the
combination of three simpler models based on protein length, amino-acid frequency, and codon
usage. We find mRNA expression decreases with gene length, and the choice of encoded amino
acids and the choice of codon each have significant but smaller impacts than protein length. The
relative impacts of these factors on protein expression are subtly different: for example, gene length
is less important than amino acid choice. In addition, among genes with mRNA but no protein
expression the impacts of all three factors are much reduced (Figure 9).

Interestingly, a codon’s impact on expression is entirely unrelated to its genome wide frequency
among expressed genes; it is not true that highly expressed genes preferentially use high frequency
codons. Therefore, to increase the expression of a protein by editing its codon composition, in
general one should select optimal codons based on their effects estimated from a model like that
fitted here, but derived from expression data from the species of interest. If the close similarity of
codon effects on mRNA and protein expression that we observed generalises to other species, then
it would be sufficient to train codon models on mRNA expression alone, which is experimentally
more tractable. However, it is important to note that whilst the codon models explain a significant
proportion of MRNA and protein expression, there will be important nuanced effects of codon usage
for individual genes. Synonymous substitutions can influence diverse mechanisms related to gene
expression and protein homeostasis including transcriptional regulation, mRNA lifetime, translation
initiation efficiency, translation elongation rate and downstream effects on protein folding as well as
degradation [27].

Constitutive Gene Body Methylation Effects

Our results minimise the role of constitutive gene-body methylation in regulating expression[12].
We found that, notwithstanding the high degree of conservation of gbM observed between
accessions, when the environment is controlled, augmenting the codon models of mRNA or protein
expression with constitutive gbM data makes only a negligible improvement to model fit. Indeed,
constitutive gbM itself is largely predicted by local codon frequencies, explaining about 44% of gbM
variation. Under these environmental conditions, constitutive gbM potentially mediates some of the
impact of codon frequencies — explaining about 3-4% of mMRNA and protein variation in the absence
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of codon frequency data - but does not contribute new information over that encoded in CDS. Since
constitutive gbM is highly conserved between accessions it is indeed plausible that it is driven by
local sequence context.

Interestingly, many codons with strong effects on gbM do not contain CpG dinucleotides. This
suggests that non-CpG local sequence context drives CpG gbM. Additionally, whilst protein length is
the major determinant of gbM variation in genes that exhibit both protein and mRNA expression, it
is irrelevant for genes with only mRNA expression, illustrating major differences in the genetic
architecture of gbM depending on protein expression.

However, we caution against the view that constitutive gbM is irrelevant to expression for the
following reasons. First, among genes with mRNA expression in rosettes, the distribution of gbM is
concentrated around 10% (Figure 5 A,B) with little variation and hence limited opportunity to
influence expression. However, there is a distinct peak of about 1,000 genes without any mRNA or
protein expression in rosettes for which gbM exceeds 75%. The expression of these genes might be
actively silenced by these high gbM levels, but this does not explain how a further ~5,000 genes are
neither expressed nor highly methylated. Second, differential methylation, both in gene bodies and
elsewhere, is strongly associated with differential mMRNA expression between Col-0 and Can-0.
Interestingly, the presence of a single differentially methylated CpG (DML) is a better indicator of DE
than is the average difference of methylation (DMR), and moreover the direction of the change in
expression is uncertain; unsigned association tests which ignore the direction of the DE are more
significant than signed tests. DML indicate perturbations in methylation due to local sequence
differences, which increase the variance in expression rather than its direction (Figure 10 C).
Differential methylation outside of gene bodies affects mRNA expression less than does gbM and has
markedly less impact on protein expression (Figure 11). Differences in transposable elements
between the accessions are only weakly associated with differential expression of nearby genes
(Figure 11).

Genes that express protein and mRNA differ from those that only express mRNA

The distribution of mMRNA expression is very different for genes which also have protein expression,
compared to those for which protein was not detected in our proteomics workflow. It is not true
that moderately high mRNA expression necessarily implies any protein expression (Figure 4). In fact,
many genes without protein expression have higher mRNA levels than those with protein. This
discordance has been noted in numerous organisms [1-6]. Those genes with both mRNA and protein
have an overall distribution close to lognormal. Taken together with the log-transformations used
here, this suggests that these genes are being expressed as the result of a balance between
independent multiplicative stochastic processes of synthesis and decay. In contrast, genes without
protein expression have a more complex distribution.

Surprisingly, using ribosome-associated mRNA expression levels does not change the picture, at least
in regard to genes with both protein and mRNA expression. The only noteworthy difference appears
in genes with mRNA expression but not protein — about 30% of which do not appear to be
associated with the ribosome. However, it should be noted that 3'RiboSeq merely quantifies
transcripts associated with ribosomes, without distinguishing between monosomes and polysomes
and does not indicate whether the transcripts are actively translated. It may be that stronger
correlations with protein expression translatome data could be obtained from ribosome profiling in
which it is possible to accurately determine the average number of ribosomes per mRNA and thus
estimate the relative translation levels of a transcript [44].
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We observed more genes with differential mMRNA than protein expression between accessions. To
some extent, this may reflect the limitations of quantitative proteomics which do not readily permit
sampling of the entire proteome, but it may also indicate buffering of the proteome. The
discrepancy may also be related to the fact that protein expression is estimated (here) from peptide
DIA data and is therefore subject to different measurement issues and different algorithmic
processing steps than RNAseq data. If this step introduces biases, they are likely to be the same
within genes across replicates, thereby contributing to differences between genes, and consequently
mRNA/protein correlations. Even with these experimental and methodological issues, it is
remarkable how estimated codon mRNA expression effects resemble protein effects (Figure 6).

The best predictor of expression in one accession is expression in a different accession

Despite the success of the codon models in Figure 9, the expression of gbM, mRNA or proteinin a
given focal accession is more strongly correlated with orthologous expression in the other,
genetically distant, accession than with lower omic levels within the focal accession. This
orthologous expression fidelity remains unexplained. Possibly this is due to active homeostatic
feedback mechanisms and the conserved effects of transcription factors on the control of expression
under unstressed conditions. In a future study, it will be interesting to determine to what extent this
predictive power is maintained in the presence of a stimulus such as a stress or a developmental
cue. Another interesting question is what underlies the residual variation in constitutive protein and
mRNA expression that is unexplained by the models used here. This is not due to measurement
noise, because the reproducibility between biological replicates is so high. Rather, this might reflect
factors such as differences in protein and mRNA degradation, related to the adaptation of the two
accessions to different environments.

Long-read genome assemblies and annotations are accurate but not yet perfect

Comparisons of our assemblies of Col-0 and Can-0 with published long-read assemblies of these
accessions show that although they agree with high fidelity over most of the genome, some
differences, concentrated within tandem repetitive regions remain. Typically, assemblies of the
reference accession Col-0 disagree at about a few thousand SNP positions (Figure 3). These
discrepancies are partially due to algorithmic differences in the assembly pipelines but might also
reflect some genuine variation in the germplasm sequenced in each study. Similarly, the
identification of gene orthologs between accessions depends on how paralogy within an accession is
defined; orthologous genes can have different numbers of isoforms and so are arguably no longer
true orthologs.

The Central Dogma Revisited

Our study is incompatible with a naive interpretation of the Central Dogma’s flow of information; it
is not true that all the relevant information in CDS passes though mRNA abundance levels alone to
modulate protein levels. One potential explanation is that our measurements of mRNA and protein
expression are at single time-points and represent the difference between synthesis and
degradation integrated over the recent past. Potentially more information would be available if
expression were measured at different time points due to e.g. diurnal cycles. Some alternative
explanations seem unlikely: First, our ribo-Seq levels are no better correlated with protein
abundance than are standard RNA-seq levels, providing no support for the hypothesis that we are
somehow biased away from relevant mRNA expression measurements by including transcripts not
associated with ribosomes. Second, our data are from bulk tissue and not single cells. If it were
technically possible to measure mRNA and protein from the same cells we might observe stronger
correlation between mRNA and protein, but it is difficult to see how this would explain how the
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additional information in CDS is actioned, because the latter is constant across cells. Third, tRNA
abundance data cannot explain the discrepancy.

Our CDS modelling summarises just the gene codon frequencies, implicitly modelling gene length as
well as gene amino acid frequencies and codon usage bias. As Figure 9 shows, all three of these
components are informative. We must therefore conclude that these codon frequencies are relevant
to protein expression but in a manner not mediated by transcript levels alone.

It is known that on average protein and mRNA expression reduces with gene length [32], and our
data supports this, but like other studies we report mRNA and protein abundance levels as
normalised estimates of the numbers of copies of these molecules, independent of their length. This
might explain why the component of CDS due to gene length is so relevant in our models. We do not
have a complete mechanistic explanation for why amino-acid frequencies and codon usage are also
important. Regardless, since all the codon information in a CDS is also present in the sequence of its
mRNA transcript, the Central Dogma still holds if the definition of information includes both
abundance level and sequence. In a sense this is closer to Frances Crick’s original conception [45].

Conclusions

This study demonstrates how simple sequence features underlie much of the variation in expression
of different omic levels and, in part, how these levels depend on each other, when and where it is
helpful to measure a level, and when we can substitute one that is difficult to measure by a more
tractable alternative. In particular, we have shown that, in the absence of environmental stress, the
levels of constitutive methylation and tRNA abundance and their effects on expression are
consequences of underlying sequence features. Finally, the Central Dogma’s flow of information
must be treated as multidimensional.
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Methods

Plant growth

Seeds of the Arabidopsis thaliana accessions Col-0 and Can-0 were obtained from the Eurasian Stock
Centre (formerly NASC). Seeds were sown on pre-soaked Levington F2 plus sand mix and stratified
for 5d at 5 °C before transferring to a controlled environment room. For long read whole genome
sequencing, plants were grown in short-day conditions: 10 h under fluorescent bulbs at 250
umol/m?/s, 23°C and 65 % relative humidity, followed by 14 h darkness at 18°C with 75% relative
humidity, and harvested shortly before bolting. Unless otherwise indicated, for all other assays,
plants were grown in long day conditions: 16 h under LED lights at 150 pmol/m?/s, 22°C and 65%
relative humidity, followed by 8 h darkness at 18°C with 75% relative humidity and harvested at the
9-leaf stage.

lllumina whole genome DNA sequencing

DNA from a single leaf of each accession was extracted using the DNeasy Plant Mini kit (Qiagen,
Manchester, UK) with on-column RNase treatment. Library preparation and lllumina sequencing
(150 bp paired end reads) was performed by the Earlham Institute, UK. Read quality was checked
using Fastqc [47], and sequencing adapters were trimmed using BBduk [48] with options “ktrim=r
k=23 mink=11 hdist=1 tpe tbo". To retain only good quality reads, a further round of quality trimming
was conducted by BBduk with options “gtrim=r trimg=10 minlen=50".

Long-read whole genome DNA sequence

Col-0 and Can-0 plants were grown under short day conditions until shortly before bolting and a
single rosette for each genotype (~2 g tissue) was harvested and snap frozen in liquid nitrogen. High-
molecular weight (HMW) DNA was extracted using a NucleoBond HMW DNA extraction kit
(Macherey-Nagel, Dueren, Germany) as per the manufacturer’s instructions. DNA quality control
was performed using agarose gel electrophoresis, UV spectrophotometry (NanoDrop Technologies,
USA), and the FP-1002 Genomic DNA 165 kb kit for FEMTO Pulse systems (Agilent technologies,
Stockport, UK). DNA was quantified using Qubit high sensitivity DNA quantification kit (Thermo
Fisher, Altrincham, UK). HMW DNA was sent to the Long Read Sequencing Facility (LRS) at University
College London (London, UK) for library preparation and sequencing.

Libraries for sequencing using Oxford Nanopore Technologies (Oxford, UK, hereafter abbreviated to
ONT or Nanopore) were prepared by using the ONT SQK-LSK109 ligation kit and sequenced on an
ONT PromethlON instrument. Initial sequencing of Can-0 produced an excessive number of short
reads (< 10 kbp), therefore the Short Read Eliminator Kit (55-100-101-01; Circulomics Inc, USA) was
used to progressively remove reads <25 kbp in the Col-0 library before sequencing. Basecalling for
ONT data was conducted using guppy_basecaller function in Guppy 5.0.16 [49], with options "-c
dna_r9.4.1_450bps_sup_prom.cfg --min_qgscore 9 --min_score 40 --trim_barcodes’. We obtained
22.5 Gb data for Can-0 (150x), with a read N50 value around 26 kbp, and 30.3 Gb data (202x) for Col-
0, with read N50 value around 33 kbp.

LRS also prepared libraries for PacBio HiFi sequencing (Pacific Biosciences of California, Inc. hereafter
PacBio HiFi). DNA fragments were firstly sheared to ~17 kb by using Megaruptor 3 (Diagenode Inc.),
and then the SMRTbell® Express Template Prep Kit 2.0 was used for constructing sequencing
libraries. Libraries were sequenced on a PacBio Sequel Il. Basecalling was performed by SMRT Link
version 9.0.0.92188 [50] followed by circular consensus sequencing (CCS) analyses to generate HiFi
sequences. For Can-0 we obtained 2.9 Gbp HiFi Q20 reads with a read N50 value of 14.5 kbp, and for
Col-0 1.45 Gbp HiFi Q20 reads with a read N50 value of 14 kbp.

Genome assembly
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For each accession, we first assembled the ONT and HiFi long read data separately and then merged
the assemblies. Nanopore data were initially assembled by using NECAT [23] with default settings
except that * CNS_OUTPUT_COVERAGE " was changed to 40. The contigs generated by NECAT were
polished by Nanopore reads using Racon v1.4.20 [51] with options *-m 8 -x -6 -g -8 -w 500",
followed by Medaka 1.4.4 [52] with options *-m r941_prom_sup _g507 °, and finally polished with
Illumina reads by Pilon 1.24 [53] with options " --changes --fix all’. In all the polishing steps,
minimap2[54] was used to map long-reads to the contigs, and bwa-mem2 [55] was used to map
Illumina short-read sequences. PacBio HiFi reads were assembled by hifiasm with option -1 0 ".

To combine the higher continuity from Nanopore-based contigs with the higher accuracy from
PacBio HiFi-based contigs, we used quickmerge [56] setting the Nanopore assemblies (after three
polishing steps described above) as ‘hybrid_assembly’ and the HiFi-read assemblies as

‘self _assembly’, and the N50 value of the polished Nanopore-read assemblies as the minimum
length cutoff (-1) of contigs to be merged. After the merging, we performed two rounds of polishing
the merged assemblies with PacBio HiFi reads using racon. The alignment of HiFi reads to the
merged assemblies was conducted with pbmm2 [57]. Where the merged assembly did not retain a
similar N50 value to the Nanopore-read assembly, we patched the Nanopore assembly to the
merged assembly using RagTag patch [58]. Finally, polished merged assemblies were placed on the
correct chromosomes using the published Col-0-CEN assembly [17] by using RagTag scaffold [58].
After scaffolding, we ran another round of final polishing of the scaffold by haplotype-aware
polishing tool Hapo-G [59]. At each round of polishing and merging, the N50 values of assemblies or
scaffolds were estimated by QUAST [60], the quality value (QV) of assemblies or scaffolds estimated
by Merqury [61], and the number of Benchmarking Universal Single-Copy Orthologs (BUSCO) for
estimating completeness and duplication calculated by BUSCO [62, 63]. Every round of polishing
increased the QV of the assemblies or scaffolds.

Omni-C sequence analysis

Genome-wide chromatin interaction data for Col-0 and Can-0 was generated using a Dovetail® (now
Cantata Bio, USA) Omni-C® Kit. Plants were grown under long-day conditions for 19 d and then dark-
treated for 48 h before leaf tissue was snap-frozen in liquid nitrogen. 500 mg of tissue was ground
into a fine powder with liquid nitrogen using a mortar and pestle and the assay performed as per the
manufacturer’s instructions for plants. Briefly, chromatin was fixed with formaldehyde and nuclease
treated. An aliquot was de-crosslinked, and DNA purified with a DNA Clean & Concentrator-5 kit
(Zymo Research, Irvine CA, USA). DNA yield and fragment size were determined using a Bioanalyzer
high sensitivity dsDNA kit (Agilent Technologies, Milton Keynes, UK) and Qubit high sensitivity DNA
quantification kit (Thermo Fisher, Altrincham, UK). The remaining lysate was then processed with
reactions for end-polishing, ligation of a biotinylated oligonucleotide bridge, intra-aggregate ligation,
and cross-link reversal, respectively. The DNA was purified and quantified using a Qubit high
sensitivity DNA quantification kit (Thermo Fisher, Altrincham, UK) before proceeding with library
preparation. Streptavidin enrichment of the biotinylated bridge was performed, and the final
libraries were indexed and amplified by PCR. lllumina NovaSeq PE150 sequencing was performed by
Novogene Co. Ltd (Cambridge, UK), on a Novaseq 6000 instrument. The 150 bp paired-end Omni-C
reads were aligned to the merged and polished scaffolds. Read de-duplication and finding contact
points was performed by following the Dovetail Omni-C kit document at https://omni-
c.readthedocs.io/en/latest/index.html. PretextMap [64] and PreTextView [65] were used to generate
and view the final contact map, to monitor and confirm the structure of scaffolds. Supplemental
Figures S1 and S2 were generated from the contact maps using PretextSnapshot
https://github.com/sanger-tol/PretextSnapshot [66]

ONT methylation data generation and differential methylation analysis
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ONT fast5 files were processed with Megalodon v2.4.1 [67] and Guppy (GPU version
5.0.16_linux64)[49] with the option " --guppy-config dna_r9.4.1_450bps_sup_prom.cfqg --remora-
modified-bases dna_r9.4.1_e8 sup 0.0.0 5mc CG 0 to generate the raw methylation data. The R
package NanoMethViz [68] was used to visualize the ONT methylation data, and as well to prepare
input files for DSS [69] for differential methylation calling between Col-0 and Can-0. The threshold P-
value for calling differentially methylated loci (i.e. at individual nucleotides) was set to 0.01, and the
threshold of P-value for calling differentially methylated regions (e.g. across gene bodies) was 0.05.
The correlation between bisulfite and nanopore methylation results were performed by the
‘megalodon_extras validate compare_modified bases™ function in the megalodon package.

Comparative multi-omic analyses

Comparative assays were performed on Can-0 and Col-0 grown under long-day conditions (described
above) until the emergence of the 9th rosette leaf. Leaves 3-8 were harvested and frozen in liquid
nitrogen. Each biological replicate comprised five plants, pooled and homogenized by grinding with a
mortar and pestle in liquid nitrogen.

Whole-genome bisulfite sequencing (WGBS)

DNA was extracted from three biological replicates of pooled leaf tissue using a DNeasy Plant Mini
Kit (Qiagen, Manchester, UK). WGBS libraries were constructed from 10 ng DNA using a Pico Methyl-
Seqg™ Library Prep Kit for lllumina-based Sequencing (Zymo Research, Irvine CA, USA). DNA quality
control was performed using agarose gel electrophoresis and UVspectrophotometry (NanoDrop
Technologies, USA). Quantification of extracted DNA was performed using a Qubit high sensitivity
DNA quantification kit (Thermo Fisher, Altrincham, UK). The quality and quantity control of WGBS
libraries employed an Agilent DNA 1000 Kit (Agilent technologies, Milton Keynes, UK) and Agilent
2100 Bioanalyzer. All kit workflows were performed according to manufacturers’ instructions.
Libraries were sequenced by Novagene (150 bp paired end reads, using a NovaSeq instrument). The
bisulfite reads were firstly trimmed by 10 bp at each end by trim_galore [70], and then bismark [71]
was run for read mapping, deduplication, and extraction of methylation information. The script
dname_bed corr.sh from dna_me_pipeline [71] was used to check the correlation of methylation
between samples. Loci covered by fewer than 10 reads were removed.

Short-read transcriptome sequencing (RNA-seq)

RNA was extracted from five biological replicates of pooled leaf tissue using a Plant RNeasy Mini Kit
(Qiagen, Manchester, UK) as per the manufacturer’s recommendations. DNase treatment was
performed using a TURBO DNA-free kit (Invitrogen, now ThermoFisher Scientific). RNA quantification
and analysis of integrity employed an Agilent RNA 6000 Nano Kit (Agilent technologies, Milton
Keynes, UK) and the Agilent 2100 Bioanalyzer. Illumina NovaSeq PE150 sequencing was performed
by Novogene Co. Ltd, UK. The sequencing data were trimmed and filtered by BBduk [48] with
options “gtrim=rl trimq=10 maq=10 " to achieve clean and good quality sequences. mRNA expression
levels were summed across all isoforms for a given gene using kallisto [72] to produce normalized
transcripts per million (TPM) values within each replicate; the expression of a gene across replicates
was estimated by the logio of their geometric mean, after adding a pseudocount of 1.0 to avoid
negative infinite values.

tRNA quantification (mim-tRNAseq)

RNA was isolated from two biological replicates of pooled leaf tissue using phenol/chloroform
extraction. Tissue was cryo-pulverised in liquid nitrogen using a Geno/Grinder® (Spex SamplePrep
2010 USA) and 1 ML of of TRIzol™ Reagent was added to 300-400 pL tissue powder, followed by
incubation at RT for 5 min. RNA was extracted by the addition of 0.2 vol chloroform, incubation at
RT for 2 min and centrifugation at 12,000 g for 15 min at 4°C. The upper aqueous phase was
extracted with an equal volume of chloroform and the RNA precipitated by addition of ice-cold 100
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% ethanol. Following centrifugation at 12,000 g for 20 min at 4°C, the pellet was washed in 80 %
(v/v) ethanol, air-dried, and resuspended in RNAse-free water. RNAs were sequenced using
modification-induced misincorporation tRNA sequencing (mim-tRNAseq)[32, 33]

Data analysis was performed using the bioinformatics pipeline in [32]. In brief, the sequences were
trimmed with cutadapt version 4.1[73]; a first step trims the GATATCGTCAAGATCGGAAGAGC
adapter in 3’, a second step trims the two bases due to the circularization (-u 2), and a last run cuts
the remaining adapter in 5: CTTGACGATATC). Only reads longer than 25 bp with quality >25 were
retained for mim-tRNAseq analysis. The package mim-tRNAseq version 1.1.7 [32] was used with the
parameters ‘—species Atha—cluster-id 0.95—threads 15—min-cov 0.0005—max-multi 4—remap—remap-
mismatches 0.075’. We determined the Araport11 ids of the resulting tRNA genes based matching
their TAIR10 coordinates.

Ribosome profiling

Ribonucleic complexes from each accession were solubilised from six biological replicates of pooled
leaf tissue and clarified as per [74]. Polysomes were separated on a sucrose gradient with
absorbance measured at 254 nm using a UV-1 monitor (Pharmacia, Uppsala, Sweden). Ribosome
profiling (3'Riboseq) was performed as described in [75] with pooling of monosome and polysomes.
Ribosome-associated RNA was precipitated using sodium acetate and ethanol and purified using a
Zymo quick RNA column (Zymo Research, Irvine CA) and the integrity assessed using an Agilent
Bioanalyzer 2100. mRNA libraries were prepared by Novogene Co. Ltd., UK and sequenced using
NovaSeq to produce paired end 150 bp reads. Data was analysed as for RNA-seq, with additional
filtering to remove ribosomal RNAs and tRNAs using sequences from [76].

Quantitative proteomics

Protein extraction, reduction, alkylation, and digestion

Total protein was extracted from four biological replicates of pooled leaf tissue. Tissue samples (100
mg) were cryo-pulverised in liquid nitrogen using a mortar and pestle. Protein was precipitated by
the addition of 5 mL pre-chilled 10% (w/v) trichloroacetic acid (TCA) in acetone, followed by
incubation at -20 °C overnight. The precipitated protein pellet was washed three times with chilled
acetone. TCA-precipitated pellets were solubilised and reduced in 100 pL of urea containing buffer [8
M urea, 50 mM triethylammonium bicarbonate (TEAB), 10 mM dithiothreitol, 1x protease inhibitor
cocktail (Roche, Mannheim, Germany)] at 25 °C for 1 hour. Protein was alkylated by the addition of
2-chloroacetamide to achieve a final concentration of 55 mM, followed by incubation at 25 °C for 30
minutes. In-solution protein digestion was performed in three sequential steps: for the first digest, 2
ug of Lys-C (Promega, Madison, WI) was added to give a 1:100, w/w enzyme-protein ratio, followed
by incubation at 37 °C for 4 hours. For the second digest, 700 uL of 50 mM TEAB was added to
reduce the urea concentration below 1 M, and 2 pg of trypsin (Promega) was added. The mixture
was incubated at 37 °C overnight, followed by the addition of a further 2 pg of trypsin for the third
digest and a 4-hour incubation at 37 °C. The digests were acidified with 1% trifluoroacetic acid (TFA)
and desalted using 50 mg SepPak tC18 cartridges (Waters Corporation, Borehamwood, UK). The
cartridge was washed with 0.1% TFA solution and eluted in two steps: (i) 300 uL 25% acetonitrile
(ACN) in 0.1% formic acid (FA); (ii) twice with 300 pL 50% ACN in 0.1% FA. The eluates were
lyophilised and stored at -20 °C. Peptide amount was determined using a Pierce Quantitative
Colorimetric Peptide Assay kit (Thermo Fisher Scientific, Hemel Hempstead, UK).

Mass spectrometry
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The proteomics data was acquired using a timsTOF HT mass spectrometer (Bruker Daltonics,
Bremen, Germany) coupled with a nanoElute 2 UHPLC system (Bruker Daltonics). Peptides (750 ng)
were loaded onto a PepMap Neo trap column (300 um x 5 mm, 5 um particle size, Thermo Scientific)
and separated on a uPAC Neo analytical column (500 mm x 180 um, 16 um pillar length, Thermo
Scientific) using a 60-min non-linear gradient consisting of 5%—17% solvent B over 42 min at a flow
rate of 300 nL/min, followed by an increase to 26% for 14 min and 37% for 4 min. The mobile phases
comprised 0.1% FA in water as solvent A and 0.1% FA in ACN as solvent B. The eluates were ionised
using a Captive Spray source via a ZDV Sprayer emitter (20 pum, Bruker Daltonics). The mass
spectrometer was set to dia-PASEF scan mode spanning 100-1700 m/z in positive ion mode. The ion
mobility (IM) range was set to 0.85-1.23 1/K0 [V s/cm2], and both the ramp time and the
accumulation time was set to 100 ms, corresponding to a ramp rate of 9.42 Hz. The variable collision
energy was applied depending on the IM, ranging from 20 eV at 0.60 1/KO0 to 59 eV at 1.6 1/K0. The
dia-PASEF windows were optimised for the Arabidopsis proteome profile using py_diAID version
0.0.19 [77]. Ten dia-PASEF scans were divided into 3 IM windows with a mass range of 300-1,200
Da, corresponding to an estimated cycle time of 1.17 s.

Proteome Data analysis
The mass spectra from Col-0 and Can-0 were searched separately against their own sequence
databases using DIA-NN v1.8.2 beta 27 [78] The Col-0 and Can-0 protein sequence databases derived
from de novo assemblies were used to generate in silico spectral libraries, which contain predicted
retention times and predicted ion mobility (1/K0) values. A maximum of one missed cleavage was
permitted with a minimum peptide length of 7 amino acids. Dynamic modifications considered
oxidised methionine, acetylation at the protein N-terminus, and methionine loss at the protein N-
terminus. Carbamidomethylation of cysteine was designated as a fixed modification. The ‘match
between runs' option was utilised to minimise missing identifications. The R package DIAgui version
1.4.2 [79] was used to generate iBAQ values [80] from the protein intensity, filtered at both
precursor and gene levels at 1% FDR, using only proteotypic peptides. The protein matrices from Col-
0 and Can-0 were combined using the Hierarchical Orthologous Group (HOG) classification, which
identifies orthologous genes between accessions (see below). The iBAQ value for gene j was
normalized using the equation:

iBAQ(i)

x 10°
> iBAQ

normalised iBAQ(i) =

Long-read transcriptome sequencing (Iso-seq)

Iso-seq data were generated from Can-0 and Col-0 rosette leaves grown under long-day conditions
(described above) to support genome annotation only. Total RNA was extracted from one biological
replicate of pooled leaf tissue, using a Plant RNeasy Mini Kit (Qiagen, Manchester, UK) as per the
manufacturer’s recommendations. Quantification of RNA and analysis of integrity was performed
using an Agilent RNA 6000 Nano Kit (Agilent Technologies, Stockport UK). PacBio Iso-Seq™
SMRTbell® libraries were constructed by Novogene Co. Ltd, UK with the Express Template Prep Kit
2.0 for sequencing on Sequel® Il System. Sequencing data were analysed according to the Isoseq3
instructions[81], including consensus sequence generation by ccs [82], primer removal and
demultiplexing by lima, trimming the polyA tail and concatemer by isoseq. The clustering step
suggested by the Isoseq3 workflow was omitted.

Genome annotation

The finalised genome assemblies of Col-0 and Can-0 were first scanned by EDTA [83] with options "--
sensitive 1 -- evaluate 1 --anno 1 to mask and annotate repeats, using the RepBase[84]
transposable element (TE) database (version 27.01) of A. thaliana as the curated TE library and the
known coding sequences of A. thaliana (Araport11 [19]). The sequences of annotated repeats were
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aligned against the Araportl1 coding sequences using blastn [85], to ensure that no gene sequences
overlapped with the repeats identified by EDTA.

After cleaning and QC, the lllumina RNAseq reads for Col-0 and Can-0 were each aligned to their
respective assembled genomes by STAR [86] with option " --outSAMstrandField intronMotif * to
generate RNAseq alignment .bam files. The .bam files together with the soft-masked genomes
generated by EDTA were then input to Braker1 [87] for gene prediction and annotation. We used the
option --UTR=on --augustus_args="--species=arabidopsis" * to apply the Augustus [88] pre-trained
gene model of Arabidopsis for ab initio gene prediction and UTR annotation. We used Braker2 to
annotate genes using the Uniprot A.thaliana proteome database [89], and the long-read protocol
from Braker to generate a version of annotation that incorporated our PacBio Isoseq data. We
mapped the filtered Iso-Seq reads to the genome by minimap2 [90] with option “-ax splice -uf --
secondary=no -C5" following the long-read protocol from Braker [91]. The three gene annotations
respectively from Braker1, Braker2, and long-read protocol were then merged and filtered by Tsebra
[92] with the option ‘long _reads_filtered.cfq’.

We used the PASA pipeline [93] to refine these Tsebra annotations. First Trinity [94] produced
genome-guided and de novo assembled transcriptomes from both Isoseq and Illumina RNAseq.
Secondly, we ran the PASA pipeline using default options with two rounds of annotation updates on
the Tsebra annotation. To make sure that we have the most complete gene set for the accessions,
we also augmented our updated annotations with the lifted over annotation from Tairl0 which was
produced by Liftoff [95] with default settings. This final step was performed by the function
agat_sp_complement_annotations.pl from AGAT v.0.9.2 [96] using the PASA updated annotation as
the reference and adding any additional genes from lifted over annotations. Functional annotation
for the finalised annotations was conducted by InterProScan [97] on https://usegalaxy.eu [98]. We
used AGAT to integrate functional and homology annotations into GFF format. Finally, we used
BUSCO to estimate the completeness of the annotated transcriptomes, and AGAT to correct small
problems in the annotation such as duplication of genes with different identifiers and changing gene
IDs.

We identified orthologous genes using OMA standalone [99]. We downloaded the OMA database
orthologs from the five Brassica species (Arabis alpina, Arabidopsis lyrate, Arabidopsis thaliana
(Tair10), Brassica napus, Brassica oleracea, Brassica rapa subsp. Pekinensis) and combined them
with the TAIR10, Col-0 and Can-0 protein sequences into Hierarchical Orthologous Groups (HOG)
using pyHam [100]. For HOGs containing more than one gene from the same accession, gene DNA
sequences were used to identify the most similar homologs inter-accessions by reciprocal blastn [85,
101] searches. If were more than two genes from each same accession in a HOG, we used DNA
sequence of each gene to search for the genes pairs between accessions that are the most similar, to
find the 1-to-1 homologous genes.

Comparative genomics

Our assemblies of Col-0 and Can-0 were aligned using minimap2 [90]. Synteny statistics were
calculated by dna_diff [20]. High-confidence variants including indels below 10bp were called by
clair3 [102] and structural variants were called using pbsv [103]with HiFi reads.

Differential expression analysis

Clean RNAseq data from Col-0 and Can-0 were fed into Trinity v2.14.0 [94] for RNAseq quantification
and differential expression analysis, using default parameters with Col-0 as the reference genome.
We used kallisto [72] for pseudo-alignment of RNAseq reads and quantification of gene and isoform
expression. The output from kallisto was used as input for EdgeR [104] for normalization and
differential expression analysis. The gene expression within each replicate sample was normalized
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by calculating transcripts per million (TPM), and inter-sample normalization was performed by
calculating Trimmed Mean of M-values (TMM) in EdgeR. We used a FDR threshold of 0.05 to identify
genes or transcripts that are differentially expressed between Col-0 and Can-0.

The normalised iBAQ proteome values were log-transformed and missing values imputed with
random values from a normal distribution (width 0.3, down shift 1.8) using Perseus v1.6.15.0 [105].
DE proteins were determined using Student t-test with threshold of 0.05 for the Benjamini-Hochberg
adjusted p-value (FDR) and a 2-fold change.

Testing relationships between annotations and expression

Relationships between a dichotomous annotation difference between Col-0 and Can-0 (such as
differential gbM or the presence/absence of a TE upstream of a gene) and continuous mRNA or
protein expression were tested by first subdividing the genes into two subsets corresponding to
those genes with and without the specified attribute (eg whether or not the gene is differentially
methylated) and then testing if the mean of the absolute values of the log, fold-change of mRNA or
protein expression in the two subsets differed, using a non-parametric Mann-Whitney test
implemented in R. Statistical significance was reported as logP, the negative logio(p-value) of the
test. This methodology does not assume any particular direction of effect between annotation and
expression.
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Supplemental Figures
Supplemental Figure $1 Omni-C contact map as generated by PretextSnapshot for Col-0
Supplemental Figure S2 Omni-C contact map as generated by PretextSnapshot for Can-0

Supplemental Figure $3 Distribution of mRNA and protein expression restricted to genes expressed in
all replicates, scaled so that the median level of expression of genes with both protein and mRNA
expression is equal to 1. A, B: scatter plots of mRNA (x-axis) vs protein (y-axis) expression for
orthologous genes in Col-0 (A) and Can-0 (B). Dotted red lines show medians. C,D: Histograms of
MRNA expression for genes with (pale red) or without (grey) detectable protein expression in Col-0
(C) and Can-0 (D). The black curves indicate lognormal densities fitted to the mRNA+protein
histograms using robust estimates of mean and standard deviation. Expression scales are
logarithmic throughout.

Supplemental Figure $4 Heatmaps of CpG methylation correlation between methylation estimated
from bisulphite-converted lllumina vs Oxford Nanopore sequence. (A) 2.6M CpG sites in Col-0 (B)
2.8M CpG sites in Can-0.

Supplemental Figure S5 Estimated codon effects on mRNA and protein expression in Col-0. Shown
are barplots representing the multiple regression coefficients for 61 non-termination codons (y-axis)
for modelling log-transformed mRNA (red) or protein expression (blue). Error bars show standard
errors.

Supplemental Figure S6 Scatter plots of the estimated codon expression effects for mRNA (A,B) or
protein (C,D) vs tRNA abundance in Col-0 (A,C) and Can-0 (B,D). Each dot represents one codon,
labelled by its codon and encoded amino acid. The black numbers are the Pearson correlation
coefficients.

Supplemental Figure S7. Differentially expressed transcripts. Of 17,771 transcripts quantified, 7.585
were differentially expressed (FDR <0.05). A. Volcano plot showing the relationship between
statistical significance (adjusted p-value) on the y-axis and the biological significance (log2 fold
change) on the x-axis. B. Gene ontology terms enrichment for different groups of differentially
expressed genes (DEGS).

Supplemental Figure $8. Differentially expressed proteins. Of 8915 proteins quantified, 1196 were
differentially expressed (>2-fold-change, adj. p <0.05). A. Volcano plot showing the relationship
between statistical significance (adjusted p-value) on the y-axis and the biological significance (log2
fold change) on the x-axis. B. Gene ontology terms enrichment for different groups of differentially
expressed proteins (DEPs).

Supplemental Tables

Supplemental Table S1 Summary statistics for our assemblies of Col-0 and Can-0, and comparisons
with three published Col-0 assemblies. Base QV estimates the error rate in the assembly, expressed
as the negative log10 of the probability a given base pair is erroneous [61], BUSCO estimates the
completeness of the gene content of the assembly in terms of 4596 single-copy orthologs found in
brassicas [62, 63]. Assembly N50 is the length of contigs such that 50% of the assembly is in contigs
of at least N50. Scaffold N50 is the corresponding length in assembled scaffolds. #Gaps is the
number of gaps in the assembly. GC content is the percentage of G+C nucleotides in the assembly.
Genome size is the total length of the assembly.
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Supplemental Table S2 Counts of differences as computed by dna_diff [20] between our Can-0 (blue
background) and Col-0 (yellow background() assemblies and with four other Col-0 and one other Can-
0 assemblies, namely Can-Lian, Col-Lian: [16], Col-CEN [17], Col-XJTU [18], Col-TAIR, the TAIR10
reference, Col-CC: the community consensus assembly (Genbank id GCA_028009825.2). Pink
background shows comparisons between selected other Col-0 assemblies. The data are shown
graphically in Figure 2.

Supplemental Table S3 Orthologous genes between Col-0, Can-0 and Araport11. Each row represents
one Homologous Group (HOG). Numbers of alternatively spliced isoforms for each gene are indicated
by the “Transcripts” columns.

Supplemental Table S4 Normalised expression values for gbM, mRNA, protein and ribo-RNA. Values
are supplied for each replicate (except for gbM) and combined across replicates, and log-transformed
in both accessions Col-0 and Can-0.

Supplemental Table S5 Pearson correlations between replicates for log-transformed mRNA, protein
and ribo-RNA expression values. Light blue background indicates correlations between replicates
within an accession, white background indicates correlations between replicates from different
accessions

Supplemental Table S6 tRNA expression values for Col-0 and Can-0.

Supplemental Table S7 Estimated codon effects in Col-0 and Can-0 together with the tRNA codon
effects

Supplemental Table S8 ANOVA tables used to generate Figure 9. Summary of omics multiple
regression models, relating to the barplots the Figure. Each block of consecutive rows with the same
background shade share the same Model specification °. Each row describes the variance component
listed as the source of variation” . The degrees of freedom for the component in the analyses of
variance is in column df . The negative base-10 logarithm of the p-value for the variance component
is in column logP °. The percentage of variance explained by the component after fitting the
preceding components in the model is in column R?%¢ (these are the values displayed in the stacked
barplots in Figure 9). The cumulative percentage of variance explained by the components is in
column Cum R?%. Each model is in the format Y ~ X, where Y is the dependent variable and X is one
or more independent explanatory variables. The dependent variables for the Col-0 analyses are:- Col-
protein, log-transformed protein expression; Col-mRNA: log-transformed mRNA expression for genes
also with protein expression; Col-mRNA*: log-transformed mRNA expression for genes without
protein expression; Col-gbM: percent gene-body methylation for genes also with protein expression;
Col-gbM*: percent gene-body methylation for genes without protein expression. Similar names apply
for the Can-0 analyses. The independent explanatory variables are:- CDS: DNA sequence composition;
gbM: percent gene body methylation; mRNA: log-transformed mRNA expression. CDS effects are
subdivided into protein.length, amino.acid.usage and codon.usage;

Supplemental Table S9 Differential Expression analysis between Col-0 and Can-0. Workbook DE

mMRNA shows the EdgeR analysis output for mRNA. Workbook DE protein shows the analysis output
for protein.
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