

# **Rice 'Heat MAGIC' mapping**

Funmi Ladejobi

Plant Genomes in a Changing Environment 16-18 October 2019 @ Wellcome Genome Campus



## Why rice? Why heat?

- Half the world's population derives a significant proportion of their caloric intake from rice.
- Unlike the other major cereals, more than 90% of rice is consumed by humans.
- It provides 21% per capita energy and 15% per capita protein globally.
- Rice yield is expected to decrease by 7-10% for every one degree rise in temperature.
- To develop diverse temperature stress tolerant rice varieties.



#### **MAGIC** populations

- Multi-parent Advanced Generation Intercross.
- MAGIC line genomes are mosaics of all founders.
- ➤ The population in highly recombined.
- ➤ Highly diverse.
- ➤ Without population structure.
- ➤ High power for trait detection.



#### The Rice *Heat* MAGIC population

**G0** 

➢ 844 MAGIC lines

≻ S<sub>6-7</sub>



#### Rice *Heat MAGIC* Founders



| Variety     | Varietal type             | Origin   | Agronomic Relevance                                                                           |
|-------------|---------------------------|----------|-----------------------------------------------------------------------------------------------|
| IR 64       | Indica                    | IRRI     | Mega-variety in Asia with wide adaptability                                                   |
| GIZA 178    | Indica /Japonica<br>cross | Egypt    | Popular rice variety in Egypt with high level heat tolerance                                  |
| MILYANG 23  | Indica /Japonica<br>cross | S. Korea | Very popular variety in Korea with wide compatibility and moderate tolerance to heat and cold |
| Chengcheong | Japonica                  | S. Korea | Cold tolerant variety from Korea with poor heat tolerance                                     |
| Dasan       | Japonica                  | S. Korea | Cold tolerant variety from Korea as well as heat tolerant in<br>Japan                         |
| Hokuriku76  | Japonica                  | Japan    | Cold tolerant variety                                                                         |
| IR72        | Indica                    | IRRI     | High yielding variety                                                                         |
| N22         | Aus                       | India    | Highly heat tolerant variety                                                                  |

#### Phenotypes

- > IRRI Philippines
- Dry season 2017
- Irrigated field conditions



## Genotyping

- Founders sequenced at coverage 11x to 15x paired end, average 13.5x.
- Over 2 million sites were called in founders.
- ~800,000 snps homozygous and polymorphic (maf = 0.125) in founders imputed MAGIC lines STITCH.
- MAGIC lines sequenced at coverage 0.3x to 1x paired end, 345 above 1x coverage, average 1.4x.
- 6 MAGIC lines sequence coverage less than 0.3x and
- ~150,000 polymorphic snps maf = 3% and 836 MAGIC lines coverage ≥ 0.3x used in analysis used for GWAS



chr05

chr04



chr06

chr07

chr08

chr09

chr10

chr11

chr12

#### Distribution of MAGIC line SNPs

chr03

chr02

chr01

Distribution of Founder SNPs

120000



## **Population variation**

#### RHM population



#### **Association mapping**

Days to flowering



#### **Plant Height**







#### **Association mapping**

Yield



Panicle length





0

5



### **Haplotype Reconstruction**

#### Reconstruction

- Estimates recombination break--points in the MAGIC lines.
- Impute founder haplotypes in the MAGIC lines.
- Perform SNP and haplotype GWAS on the imputed genome



http://mtweb.cs.ucl.ac.uk/mus/www/19genomes/MAGICseq.htm

**UC** 

STITCH - Founder snp dosage estimation at 800, 000 SNPs

- Genome-wide dosage mapping
- Haplotype dosage mapping mixed model analysis

Reconstruction

- infer breakpoints from low-coverage sequence data
- impute the genomes of the MAGIC lines

Genome scan

• perform SNP and haplotype association mapping on the imputed genome

http://mtweb.cs.ucl.ac.uk/mus/www/19genomes/MAGICseq.htm

## Haplotype association mapping



Height dosage QQplot



Chromosome

#### Summary and outlook

Low coverage sequence data in the MAGIC lines were imputed using genotype datasets

- QTLs have been identified underlying key morphological traits.
- QTLs consistently mapped using data from different imputation methods.

Ongoing work

 Phenotyping and identification of QTLs underlying temperature stress related traits.

#### Acknowledgements





Richard Mott Mike Scott – **P24** Thu Hong Le



Hei Leung Ken McNally RK Singh



**RK Singh** 



Keith Gardener James Cockram





UK Research and Innovation



# **Thanks for listening**