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1 Formulation

Hayashi’s formulation of IC-XT as in [1] is:

An(NPM) = An(0)− j
NPM∑
l=1

χnm(l)exp
[
−jφrnd(l)

]
Am(l − 1) (1)

≈ −j
NPM∑
l=1

χnmexp(−jφrnd,l) Where: φrnd,l v U(0, 2π) (2)

where An is the complex amplitude of the IC-XT of the target core n, Am
is the complex amplitude of the signal in the active core, χnm is the coupling
coefficient between cores n and m, φrnd,l is the random phase shift (0 to 2π)
at the lth phase matching point (PMP) and NPM is the total number of phase
matching points between cores n and m in the MCF.

The derived distribution of a sine and cosine function of a uniformly dis-
tributed random variable between 0 and 2π is the arcsine distribution:

f(x) =
1

π

1√
1− y2

(3)

The function is defined between its support [−1, 1] and it is symmetric to its
mean 0 and variance 0.5.
For this reason when summing all the random variable for the PMP, due to the
central limit theorem (CLT) An will follow Gaussian distribution in real and
complex domain with µ = 0 and σ2 = 1

2NPMχ
2
nm.

The intensity distribution of An is found using In = |An|2 = ReAn
2 +

ImAn
2, which leads to a sum of two squared 0 mean normal distributions,

leading to a second order 2
2df distribution. Considering both polarisations, 4

squared IID Gaussian random variables need to be considered, leading to a
fourth order 2

4df distribution described as:

fχ2,4df (x|σ) =
x

4σ4
e

−x
2σ2 (4)
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where σ is the standard deviation of the gaussian random variable. This distri-
bution has a mean of 4σ2 and a variance of 8σ4.
Substituting σ2 in our case:

fχ2,4df (x) =
x

N2
PMχ

4
nm2

e
−x

NPMχ2
nm (5)

with a mean of 2NPMχ
2
nm and variance of 2N2

PMχ
4
nm.

2 Proposed model

The proposed model is described as follows:

An,t(NPM) = An(0, t)− j
NPM∑
l=1

χnm(l)exp [−jφl,t]Am(l − 1) (6)

≈ −j
NPM∑
l=1

χnmexp(−jφl,t) (7)

= −j
NPM∑
l=1

χnmexp(−jφl,t−1 + γ) (8)

= −j
NPM∑
l=1

χnmexp

[
−j

(
φl,0 +

t∑
k=1

γ

)]
Where: γ v N(µ, σ2) (9)

Where φl,0 are the theoretical phase shifts between the active and target core
at the lth phase matching point derived from the equations described in [2], µ
and σ are the mean and standard deviation of the Gaussian distributed random
variable γ respectively.

Lets consider a single PMP and its dependence with time:

χnmexp

[
−j

(
φl,0 +

t∑
k=1

γ

)]
(10)

Now consider the exponential part alone:

exp

[
−j

(
φl,0 +

t∑
k=1

γ

)]
= cos

[
φl,0 +

t∑
k=1

γ

]
− j · sin

[
φl,0 +

t∑
k=1

γ

]
(11)

As it is well known sin and cos are periodic function with a period of 2π. This
makes the random walk act on a circular plane represented by the finite Group
in R with support [0, 2π). This can be represented as a random walk in Rn,
the real modulo n, where in our case n = 2π. This random walk corresponds
to a Markov chain which is irreducible, aperiodic and double stochastic (for
more information read [3, 4]), thus its stationary probability will be uniformly
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Figure 1: Random Walk distribution over the support with dfferent number of
samples

distributed on Rn, and therefore on the support [0, 2π). Additional information
and proof can be found in: [5, 6, 7, 8].

Analysis on the convergence can be performed but it is out of the scope of
this paper. A simple conclusion is that the larger the sigma the faster it con-
verges due to the fact that it is capable of better exploring the space. Similar
conclusion can be taken into consideration whith µ: the largest is the ||µ||1 the
faster it converges, because it will move more uniformly throughout the support.

This shows that when the number of samples and time windows tends to
infinity the stationary distribution of the phase component correspond to the
one described in [1], therefore the derived distribution for the IC-XT intensity
derived above corresponds to the corresponding stationary distribution for the
proposed model. This makes the IC-XT an ergodic process but not stationary.

p

(
lim

t→+∞
exp

[
−j

(
φl,0 +

t∑
k=1

γ

)])
= p(exp[−jφrnd,l]) Where: φrnd,l v U(0, 2π)

(12)
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So:

lim
t→+∞

[An,t(NPM)] ≈ lim
t→+∞

[
−j

NPM∑
l=1

χnmexp

[
−j

(
φl,0 +

t∑
k=1

γ

)]]
(13)

= −j
NPM∑
l=1

χnmexp(−jφrnd,l) Where: φrnd,l v U(0, 2π) (14)

The stationary distribution will therefore be the same derived distribution:

fχ2,4df (x|σ) =
x

4σ4
e

−x
2σ2 (15)

More specifically:

fχ2,4df (x) =
x

N2
PMχ

4
nm2

e
−x

NPMχ2
nm (16)

with a mean of 2NPMχ
2
nm and variance of 2N2

PMχ
4
nm.
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