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CRC-TME Organoids by Oncogenes and Stromal Cells
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(TOP) CRC-TME model. Murine colonic ~ (MIDDLE) UMAP distributions of an (BOTTOM) EMD-derived PCA spaces of
organoids with a range of genotypes integrated scRNA-seq dataset containing all cells in each of the three cell-types. In
mimicking CRC progression were all cells from whole CRC-TME model. the epithelial organoids the genotype
cultured in the presence or absence of Using the expression of canonical cell and microenvironment axes are
fibroblasts and/or macrophages and type markers we can resolve epithelial  recovered by PC1 and PC2 respectively.
analysed via droplet-based scRNA-seq.  cells, fibroblasts, and macrophages.
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4 2 scRNA-seq Identifies Colonic Epithelial Differentiation )

(LEFT) PHATE embedding of the Wild-
type organoid monoculture where the
cells are coloured by cluster. These
clusters recapitulate the main colonic
epithelial niches.

(BELOW) Dot plot showing the
expression pattern of selected
epithelial niche markers across the
different clusters.
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(ABOVE) PHATE embedding of an
integrated scRNA-seq dataset of all
epithelial cells from the CRC-TME
model. Cells are coloured by clusters,
recapitulating the epithelial niches.
Inset shows cell-state scores.
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4 @ Fibroblasts Promote the Epithelial TA Population,
Perturbing their ER Stress Response

Differential Abundance cell neighbourhoods
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l (LEFT) PHATE embedding of integrated scRNA-seq dataset
Cell Communication containing epithelial cells from all four wild-type organoid cultures.
analysis with CellChat
Organoid . (ABOVE) Differential Abundance analysis reveals the density
9 @ ! + iFibroblasts )
coculture changes brought by the presence of fibroblasts (5% FDR). The
l PHATE embedding shows the cell neighbourhood graph, where
e significantly enriched and depleted neighbourhoods are shown as
[ TA Cluster ratio  coloured nodes. The beeswarm plot on the right shows the
- | enrichment of the TA population.
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(ABOVE) Cell Communication analysis between wild-type
organoids and fibroblasts in a coculture. The scatter plot
shows the clusters according to the strength of their
outgoing and incoming interactions. These results suggest
a key signalling role of the fibroblasts, with the TA
population monopolising the incoming signalling.

(ABOVE) Violin plots show the expression level of epithelial niche
markers (stem: Krt4, Cd44 and Sox9, absorptive: Apoat) and of
ER stress response hallmarks (Hspa5, Ddit3) in wild-type
organoids cultured with or without fibroblasts. Note the fibroblast-
induced promotion of stem cell markers and break down of the ER
stress response characteristic of the TA population.
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combinations. Gene signatures have been curated and
grouped based on hierarchical clustering of DE genes.

Note the promotion of stem cell markers (and associated de-
differentiation) by both fibroblasts and, specially, the
oncogenic mutations. DE also reveals a set of signatures
that capture the stages of CRC progression, and a signature
associated with the presence of fibroblasts. This fibroblast-
associated signature is limited to the wild-type and shApc
organoids, suggesting a loss of stromal control in CRC
epithelia.

(RIGHT) Cell Communication analysis is used to compare
signalling changes in fibroblasts cocultures of wild-type and
shApc, Kras<'2°+, Trp537'724- organoids. The plot shows the
relative information flow of signalling pathways from the
fibroblasts to the epithelial cells, with values <0.5 indicating
a dominance in wild-type organoids. This analysis suggests
cell signalling between fibroblasts and organoids vastly
changes according to organoid genotype, with pathways like
EGF specific to wild-type organoids and others like HGF to

\CRC organoids.
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(ABOVE) Differential Expression (DE) heatmap of all epithelial
organoid cells across all sixteen genotype / microenvironment
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